
Easy Multi-threading with
Visual FoxPro

Kevin Ragsdale
The Net Results

Voice: 931-409-9899
Email: kevin@kevinragsdale.net

http://kevinragsdale.net
Twitter: @KevinRagsdale

This document provides an introduction to Christof Wollenhaupt’s DMULT.DLL – a “helper”
utility which provides multi-threaded capability to your Visual FoxPro applications. Christof’s
DLL is by far the easiest method I’ve found for adding multi-threaded capabilities to my own
applications.

mailto:kevin@kevinragsdale.net
http://kevinragsdale.net/

Introduction
It all started with a simple question in the September 2006 issue of Advisor Guide to
Microsoft Visual FoxPro:

Question: Many things would be easier to do if I could run them in a background thread. Is
there a way to create multi-threaded applications in VFP?

The question was answered by Contributing Editor Christof Wollenhaupt:

Answer: There’s a clear answer to that: It depends.

Christof went on to explain that “it depends” really depends on what you consider to be a
multi-threaded application.

We’ve had the ability to create multi-threaded DLLs in Visual FoxPro since Version 6,
Service Pack 3. But this doesn’t mean we’re creating multi-threaded applications just
because we are creating multi-threaded DLLs. When you instantiate a COM server located
in a DLL, Visual FoxPro can only load it into the same thread as the main application.

In essence, if your DLL is performing “SomeLengthyProcess”, Visual FoxPro (your
application) must wait for “SomeLengthyProcess” to complete before it can proceed. This
can confuse users as your app becomes unresponsive to user actions, and also opens the
door for Windows to append a not-so-beautiful “(Not Responding)” message to the title bar
of your application (Figure 1).

Figure 1: Windows provides a "helpful" Not Responding message

This article introduces a C++ DLL “helper utility” written by Christof, which he explained in
further detail in the Advisor Answers section mentioned above.

So, what is multi-threading anyway?
Based on all of the definitions I’ve seen on multi-threading via books, articles, and
numerous Google searches, multi-threading is simply this: the ability to perform multiple
activities at the same time within an application. This is even truer these days with our
multi-core CPUs.

From WikiPedia: On a single processor, multithreading generally occurs by time-division
multiplexing (as in multitasking): the processor switches between different threads.
This context switching generally happens frequently enough that the user perceives the
threads or tasks as running at the same time. On a multiprocessor or multi-core system, the
threads or tasks will actually run at the same time, with each processor or core running a
particular thread or task.

Source: http://en.wikipedia.org/wiki/Multithreaded

What are the advantages of multi-threading?
For me, the number one advantage of multi-threading is simple: responsiveness of the
application user interface.

It’s been said many times before that for users, your application’s user interface is the
application. In my experience, nothing screams lousy UI (and lousy application) like a non-
responsive UI.

Another advantage is the ability to perform necessary and/or optional functions without
interrupting the users’ workflow. I use multi-threaded requests in several apps to check
for program updates in the background. If an update is found, the app will announce the
availability to the user. Another app pulls a variety of information from several different
websites in the background, parsing the information, writing to tables, etc., all while the
user does other things in the app without ever realizing how much work is going on in the
background. In short, the app remains responsive to the user, even while it’s busy
performing multiple tasks.

http://en.wikipedia.org/wiki/Multithreaded

A quick example of “SomeLengthyProcess”
Let’s take a look at an unresponsive UI triggered by SomeLengthyProcess in a multi-
threaded DLL.

I’ve got a project named SAMPLE.PJX, which contains a single PRG file named
SAMPLEMAIN.PRG, and I’ve compiled the project as a multi-threaded DLL (SAMPLE.DLL in
the source code for this session).

Here’s the code from SAMPLEMAIN.PRG:

 DEFINE CLASS EasyMTServer As Session OLEPUBLIC

 PROCEDURE SomeLengthyProcess (toCallback)

 ** We'll declare the Windows API Sleep

 ** function, so we can ensure the

 ** process runs for 20 seconds.

 DECLARE Sleep IN WIN32API Long

 ** Create a variable for

 ** our FOR/ENDFOR loop.

 LOCAL lnCount As Integer

 ** Print a string to the main VFP window.

 FOR lnCount = 1 TO 20

 ** Create a SYS(2015) value, and

 ** print it back to the VFP window.

 toCallback.DoCmd("? + ALLTRIM(SYS(2015))")

 ** Let's sleep for 1 second

 Sleep(1000)

 ENDFOR

 ** Write out a Done!

 toCallback.DoCmd("? + 'Done!'")

 CLEAR DLLS "Sleep"

 ENDPROC

 ENDDEFINE

Looks like a lengthy process, right? It should take 20 seconds to run. After instantiating
the COM server (DLL), I’m going to call the SomeLengthyProcess method and pass in the
_VFP object as the callback. For 20 seconds, the DLL will create a SYS(2015) string (once
every second) and tell _VFP to write the string out to the main VFP window.

Calling the DLL from the VFP Command Window looks like this:

 loDLL = CREATEOBJECT("sample.EasyMTServer")

 loDLL.SomeLengthyProcess(_VFP)

Perfect! I’ve got a multi-threaded DLL that stays busy for 20 seconds, writing back to my
VFP session so I can see what it’s doing. But, there’s a problem:

My VFP session is unresponsive (Figure 2). I can click, double-click and even triple-click all
I want, but nothing is happening while SomeLengthyProcess is running!

Figure 2: A multi-threaded DLL doesn't run in a separate thread

Clicking around the VFP window can cause Windows to append the previously shown “Not
Responding” message to the title bar. At times, the VFP window (or your application) can
fade (Figure 3) and in Windows Vista/Windows 7 you (or your users) may see a message
like the one seen in Figure 4.

Figure 3: An application that is unresponsive and faded by Windows

Figure 4: Not a lot of fun when it's your app that is not responding

As I wrote in the Introduction (based on information from Christof’s Advisor Answer),
when you instantiate a COM server located in a DLL, VFP can only load it into the same
thread as the main application. So, while SomeLengthyProcess is running, the VFP IDE is
unavailable.

Enter “helper” utilities
All is not lost, however, as Christof further explains: Even if you create an MTDLL in VFP, you
need an additional helper utility that creates a new thread, initializes the apartment, and
loads the COM server.

There are three such “helper” utilities available that I know of (they were all mentioned by
Christof in his Advisor Answer):

 Remus Rusano’s VFPMTAPP.DLL
Remus published his DLL and had it posted at http://multithreadedvfp.com for a
while. At some point, that address began to redirect to a 404 page on Geocities. I
found an archived version of the page (which includes some documentation and a
download for his helper utility) at
http://www.oocities.org/rremus/multithreaded_vfp.htm

I have not used Remus’ helper to date (primarily because Christof’s is so easy to use,
hence the title of this session).

 Calvin Hsia’s code from his blog
Calvin published a routine on his blog at
http://blogs.msdn.com/b/calvin_hsia/archive/2006/05/16/599108.aspx which
creates assembler code and writes it into memory at runtime. Amazing? Yes.
Unreadable? To me, yes. Feasible? Not really, thanks to DEP (Data Execution
Prevention). DEP prevents code execution in data-only memory blocks.

With DEP turned on, Calvin’s code dies a horrific “Microsoft Visual FoxPro has
stopped working” error (similar to the window in Figure 4). If your app is using this
code and DEP triggers the failure, your app will die the same horrific death.

DEP notwithstanding, Claude Fox ran with Calvin’s code and even created a
Codeplex project for it at http://mtmyvfp.codeplex.com/.

For me though, this should simply not be used in production code. Ever.

This leaves us with one more helper:

 Christof’s DMULT.DLL
Christof’s DMULT.DLL is a C++ DLL that allows you to instantiate a COM DLL object
in another thread. It is also the focus of this session and whitepaper.

With Christof’s permission, I’ve included DMULT.DLL in the sample code for this
session. You can download the complete version (including the DLL source code,
slides from a presentation he did several years ago, and more) at his website:

http://www.foxpert.com/download/DMULT.ZIP

http://multithreadedvfp.com/
http://www.oocities.org/rremus/multithreaded_vfp.htm
http://blogs.msdn.com/b/calvin_hsia/archive/2006/05/16/599108.aspx
http://mtmyvfp.codeplex.com/
http://www.foxpert.com/download/DMULT.ZIP

Getting started with DMULT.DLL
First things first: all code you want to run in a different thread needs to go in a project of its
own. Using the sample we looked at earlier, this is already done.

We built the SAMPLE.PJX into a multi-threaded DLL, ran it directly from the VFP IDE, and
found it was just not feasible thanks to the unresponsiveness of the IDE while waiting for
SomeLengthyProcess to complete.

So, let’s create a new PRG file which will use Christof’s DMULT.DLL to instantiate the
SAMPLE.DLL in a separate thread (the following code is contained in a FUNCTION named
MultiThreaded in the BASICSAMPLE.PRG file included with this paper).

 Declare Long CreateThreadWithObject in DMult.DLL ;

 String lpszClass, ;

 String lpszMethod, ;

 Object oRef, ;

 Long @lpdwThreadId

 Declare CloseHandle in Win32API LONG

 LOCAL lnHandle, lnThreadID

 lnThreadID = 0

 lnHandle = CreateThreadWithObject(;

 Strconv("sample.EasyMTServer"+Chr(0),5), ;

 Strconv("Main"+Chr(0),5), ;

 _VFP, ;

 @lnThreadID ;

)

 =CloseHandle(m.lnHandle)

And that’s it! Run the program and you will see the same results as before, but with one
major difference: the VFP IDE is available immediately after starting this program!

How did that work?
DMULT.DLL has two methods available: CreateThreadWithObject(), and
CreateThreadWithString(). For purposes of this session, we will be using
CreateThreadWithObject() exclusively.

When we called CreateThreadWithObject(), we sent in three parameters:

 The COM server DLL we want to instantiate in a different thread (note the DLL must
be registered in order for this to work)

 The method within the COM server DLL we want to run

 A callback object

Note: the server name and the method to run need to be passed in Unicode. Luckily, this is
easy to do with the STRCONV() function in VFP:

For the server name, we append a NULL character (CHR(0)) then STRCONV() with a
conversion setting parameter of 5 (DBCS to Unicode).

We do the same for the method within the DLL that we want to run.

Lastly, we send in a callback object. As Christof noted in his article, we can only send COM
objects to API functions. Luckily, _VFP is a COM object, which makes the preceding demo
quite easy to implement.

You should note, however, that you can really send any VFP object (forms, textboxes,
custom classes, etc.) to CreateThreadWithObject() as a callback. You just need to convert
the object to a COM object. Christof shows a neat trick you can use to convert the VFP
reference to a COM reference.

Let’s say you want the callback to be a textbox on a form. The textbox is named
txtMyCallback, and the COM server DLL will write back to the Value property of the textbox
(instead of our earlier example of writing to the _VFP IDE window). How can we convert
the VFP reference to a COM reference? It could look something like this:

 loTextBox = ThisForm.txtMyCallback

 loCOMRef = _VFP.Eval("loTextBox")

After that, we send in loCOMRef as the callback object (the third parameter in
CreateThreadWithObject()).

To make this work from within the DLL, we simply change the following line:

 toCallback.DoCmd("? + ALLTRIM(SYS(2015))")

to this:

 toCallback.Value = ALLTRIM(SYS(2015))

Since toCallback is now a textbox on a form, the value is updated once every second for
twenty seconds with a SYS(2015) value.

I normally would not use this type of callback functionality, though. I tend to create my
own custom callback objects, which act as event handlers for the multi-threaded DLL.

We’ll take a deeper look at callback objects in the section titled “Let’s try a multi-threaded
approach (with event handlers)”.

This is cool stuff, but where’s the real-world examples?
I’m glad you asked! Let’s take a look at something that could take a while to process: HTTP
requests.

I’ve created a sample form, GETBLOGS.SCX, which calls out to my web server to retrieve a
list of FoxPro-related blogs. I stole leveraged some data from Ted Roche’s PlanetFox site,
which is available at http://www.tedroche.com/planetfox/ , and put it in a web page on my
server.

The form (Figure 5), contains a button with the caption “Get Blogs from Planet Fox”. When
you click this button, the form uses Craig Boyd’s VFPConnection.fll to call the page on my
server. When the response is returned, it parses the response to grab the URL for
approximately 60 blogs, inserts the URLs into a cursor, and updates the grid on the form.

Note: This session does not cover VFPConnection.fll in detail. If you want to learn more about
it, I recommend Rick Schummer’s “How Craig Boyd Makes Me A Hero!” session.

Here’s the code from the cmdGetBlogs button Click() event:

 This.Enabled = .F.

 ThisForm.cmdCancel.Enabled = .T.

 SELECT xBlogs

 SET SAFETY OFF

 ZAP

 SET SAFETY ON

 ThisForm.grdBlogs.RecordSource = ""

 ThisForm.grdBlogs.RecordSource = "xBlogs"

 ThisForm.grdBlogs.Refresh()

 LOCAL loDLL As Object

 loDLL = CREATEOBJECT("BlogStuff.BlogRetriever")

 loDLL.GetBlogs(THISFORM)

I’ve sent THISFORM as a parameter to the GetBlogs function in the BLOGSTUFF.DLL. The
GetBlogs function will call THISFORM’s ProcessBlogs method, which will parse the result
and add records to the xBlogs cursor.

This code actually runs pretty fast, so I added some special code to the Page_Load event on
the web page to slow it down a bit. I put the ASP.NET thread on the web server to sleep for
5 seconds, just to make sure it takes a while to return the response to the HTTP request.

While the request is taking place, you can click all over the form (try the Cancel button), or
even within the VFP IDE, but until the request is complete, the form (and IDE) is
unresponsive.

http://www.tedroche.com/planetfox/

Figure 5: The GETBLOGS.SCX form

Once the process has finished, we will have a list of feed URLs in the grid (Figure 6).

Figure 6: The GETBLOGS.SCX form after retrieving Feed URLs

Let’s click the “Get Authors from Blogs” button. This will walk us through the list of URLs,
and for each one we’ll again use Craig Boyd’s FLL to hit each URL and extract the Title (or
Author) information from each.

Good luck with this one. It could take a while to complete. On my system at home, it
usually takes between 65 and 90 seconds. That’s 65 to 90 seconds of non-responsive UI,
which can really cause users to believe the app just isn’t very good.

Here’s the code from the cmdGetAuthors button Click() event:

 LOCAL lnStart, lnEnd

 lnStart = SECONDS()

 This.Enabled = .F.

 ThisForm.cmdCancel.Enabled = .T.

 SELECT xBlogs

 GO TOP

 SET LIBRARY TO vfpconnection.fll

 SCAN

 LOCAL lcHTTP As String

 lcHTTP = HTTPToStr(ALLTRIM(xBlogs.cURL))

 lcAuthor = STREXTRACT(lcHTTP,[<author><name>],[</name>],1)

 IF !EMPTY(ALLTRIM(lcAuthor))

 REPLACE cAuthor WITH STRTRAN(ALLTRIM(m.lcAuthor),"'","'")

 ELSE

 lcAuthor = STREXTRACT(lcHTTP,[<title>],[</title>],1)

 IF !EMPTY(lcAuthor)

 REPLACE cAuthor WITH STRTRAN(ALLTRIM(m.lcAuthor),"'","'")

 ELSE

 DELETE

 ENDIF

 ENDIF

 ThisForm.grdBlogs.Refresh()

 ENDSCAN

 ThisForm.grdBlogs.Refresh()

 ThisForm.cmdCancel.Enabled = .F.

 lnEnd = SECONDS()

 This.Caption = ALLTRIM(TRANSFORM((lnEnd - lnStart),"99.99") + " seconds")

Let’s try a multi-threaded approach (with event handlers)
We’ve seen a process that can take a very long time to complete, and we’ve seen the UI
completely unusable until the process has completed. Let’s “take out the slow parts” by re-
working this for DMULT.DLL.

First, we’re going to need a COM server DLL. I’ve created a project named BLOGSTUFF.PJX,
which contains a PRG file named BLOGSTUFFMAIN.PRG. This DLL is actually used on the
GETBLOGS.SCX form, when you click the “Get Blogs from PlanetFox” button. Here’s the
code listing for this PRG:

 DEFINE CLASS BlogRetriever As Session OLEPUBLIC

 PROCEDURE Init

 ** This assumes vfpconnection.fll is

 ** located in your path by the DLL!

 SET LIBRARY TO vfpconnection.fll

 ENDPROC

 PROCEDURE Destroy

 ** Release the fll

 SET LIBRARY TO

 ENDPROC

 PROCEDURE GetBlogs(toCallback)

 ** This function calls the web server and

 ** returns a string to be parsed by the

 ** callback object.

 LOCAL lcHTTP As String, lcList As String

 lcHTTP = HTTPToStr("www.kevinragsdale.net/FoxBlogs.aspx")

 lcList = STREXTRACT(lcHTTP,[<h2>Subscriptions</h2>],[],1)

 ** toCallback is the form. It contains a method

 ** named ProcessBlogs which will parse this result.

 IF VARTYPE(m.toCallback) == "O"

 TRY

 toCallback.ProcessBlogs(m.lcList)

 CATCH

 ENDTRY

 ENDIF

 ENDPROC

 PROCEDURE GetAuthor(toCallback)

 LOCAL lcHTTP As String, lcURL As String, llContinue As Boolean

 lcHTTP = ""

 lcURL = ""

 llContinue = .T.

 IF VARTYPE(m.toCallback) == "O"

 TRY

 m.lcURL = m.toCallback.cURL

 CATCH

 m.llContinue = .F.

 ENDTRY

 ELSE

 m.llContinue = .F.

 ENDIF

 IF m.llContinue

 m.lcHTTP = HTTPToStr(m.lcURL)

 ENDIF

 ** toCallback is a custom object with a

 ** method named ProcessResult which will

 ** parse this result.

 IF VARTYPE(m.toCallback) == "O"

 TRY

 m.toCallback.ProcessResult(m.lcHTTP)

 CATCH

 ENDTRY

 ENDIF

 ENDPROC

 ENDDEFINE

This code assumes that VFPConnection.fll exists and can be located by the DLL. This DLL
consists simply of one object with two methods. Both methods do basically one thing: they
each make an HTTP request then send back the result to the callback object that is sent in
as a parameter.

Now, let’s go back to the form. This time we’ll use GETBLOGS_MT.SCX. It looks the same, in
fact it is the same as the previous form, except we’ve moved a couple of bits of code around.

In the cmdGetBlogs button Click() event, we’ve removed everything past the “zap the
cursor and set the grid’s RecordSource” part and replaced it with this:

 Declare Long CreateThreadWithObject in DMult.DLL ;

 String lpszClass, ;

 String lpszMethod, ;

 Object oRef, ;

 Long @lpdwThreadId

 Declare CloseHandle in Win32API LONG

 Local lnHandle, lnThreadID, loCallback

 lnThreadID = 0

 loCallback = THISFORM

 lnHandle = CreateThreadWithObject(;

 Strconv("BlogStuff.BlogRetriever"+Chr(0),5), ;

 Strconv("GetBlogs"+Chr(0),5), ;

 _VFP.Eval("loCallback"), ;

 @lnThreadID ;

)

 =CloseHandle(m.lnHandle)

That looks easy, doesn’t it? Note the loCallback object: we’ve set it to THISFORM, and we’re
converting the VFP reference of the form to a COM reference using Christof’s
_VFP.Eval(“loCallBack”) trick.

One thing you’ll notice when you click the “Get Blogs from Planet Fox” button is control is
returned almost immediately back to you. You can click on the form (try the Cancel
button), or even in the VFP IDE (Command Window, menu, etc.) - they’re all responsive!

In the CreateThreadWithObject() above, we’re telling DMULT.DLL to create a new thread
for the BlogStuff.dll (with the BlogRetriever object), run the GetBlogs method, and use
THISFORM as the callback.

The GetBlogs method hits my website (again using Craig Boyd’s FLL), extracts some info
from it, then does this:

 toCallback.ProcessBlogs(m.lcList)

Since toCallback is THISFORM, we need a ProcessBlogs method on the form to handle the
response from GetBlogs. Hence, ProcessBlogs becomes the event handler. Here’s the code
from the forms ProcessBlogs method:

 LPARAMETERS tcHTMLString As String

 LOCAL lcTable As String

 lcTable = tcHTMLString

 lnRecords = OCCURS([],lcTable)

 ** For each , check for <a>'s

 IF lnRecords > 0

 FOR i = 1 TO lnRecords

 lcLI = STREXTRACT(lcTable,[],[],i)

 lcURL = STREXTRACT(lcLI,[<a href="],["],1)

 IF !EMPTY(ALLTRIM(m.lcURL))

 INSERT INTO xBlogs (cAuthor,cURL) VALUES ("",ALLTRIM(m.lcURL))

 ENDIF

 ThisForm.grdBlogs.Refresh()

 ENDFOR

 ENDIF

 ThisForm.cmdCancel.Enabled = .F.

 ThisForm.cmdGetAuthors.Enabled = .T.

 This.cmdGetBlogs.Caption = "Found " + ;

 ALLT(TRANSFORM(RECC("xBlogs"),"99")) + ;

 " Blogs"

This is the same code as in the previous form example.

Now we’re ready for the fun part. Let’s click the “Get Authors from Blogs” button.
Remember the previous example, when it took over a minute to complete?

Check.

This.

Out.

Pretty fast, eh? Did you notice the UI (including the VFP IDE) was totally responsive? The
whole process takes about 5 to 6 seconds on my system at home, which is a tremendous
improvement over the 60+ seconds from the previous form.

The code in the cmdGetAuthors button Click() event has changed in this form versus what
was in the previous form. Here’s the new code:

 This.Enabled = .F.

 ThisForm.cmdCancel.Enabled = .T.

 SELECT xBlogs

 GO TOP

 LOCAL lnHandle, lnThreadID, loCallback

 SCAN

 SCATTER MEMVAR

 lnThreadID = 0

 loCallback = NEWOBJECT("AuthorsHandler","bloghandler.prg","",m.cURL)

 lnHandle = CreateThreadWithObject(;

 Strconv("BlogStuff.BlogRetriever"+Chr(0),5), ;

 Strconv("GetAuthor"+Chr(0),5), ;

 _VFP.Eval("loCallback"), ;

 @lnThreadID ;

)

 =CloseHandle(m.lnHandle)

 ENDSCAN

 ThisForm.cmdCancel.Enabled = .F.

Notice the new callback this time? loCallback is an object named AuthorsHandler which is
located in the BLOGHANDLER.PRG file:

 DEFINE CLASS AuthorsHandler AS CUSTOM

 cURL = ""

 PROCEDURE Init (tcURL As String)

 This.cURL = ALLTRIM(tcURL)

 ENDPROC

 PROCEDURE ProcessResult (tcString AS String)

 LOCAL lcString As String

 lcString = tcString

 lcAuthor = STREXTRACT(lcString,[<author><name>],[</name>],1)

 IF !EMPTY(ALLTRIM(lcAuthor))

 lcAuthor = STRTRAN(ALLTRIM(m.lcAuthor),"'","'")

 ELSE

 lcAuthor = STREXTRACT(lcString,[<title>],[</title>],1)

 IF !EMPTY(lcAuthor)

 lcAuthor = STRTRAN(ALLTRIM(m.lcAuthor),"'","'")

 ENDIF

 ENDIF

 IF USED("xBlogs")

 IF !EMPTY(lcAuthor)

 UPDATE xBlogs SET cAuthor = ALLTRIM(m.lcAuthor) ;

 WHERE ALLTRIM(cURL) = ALLTRIM(This.cURL)

 ELSE

 UPDATE xBlogs SET cAuthor = "Unknown" ;

 WHERE ALLTRIM(cURL) = ALLTRIM(This.cURL)

 ENDIF

 ENDIF

 ** We're done with processing the result, so release this

 This.Release()

 ENDPROC

 PROCEDURE Release

 RELEASE THIS

 ENDPROC

 ENDDEFINE

We’ve taken the “processing” code out of the Click() event (from the previous form) and
moved it to this objects’ ProcessResult method.

So, for each record in the xBlogs cursor, we create a new object (AuthorHandler), and call
CreateThreadWithObject() in DMULT.DLL. In this case, approximately 60 almost
simultaneous requests/threads (as fast as VFP can run through the SCAN loop, literally).

If you watch Windows TaskManager when you first click the Get Authors button, you’ll see
the thread count skyrocket, and (almost as quickly) come back down to the count it was at
before you clicked the button.

Let’s go back to the GetAuthors method in BLOGSTUFF.DLL:

 PROCEDURE GetAuthor(toCallback)

 LOCAL lcHTTP As String, lcURL As String, llContinue As Boolean

 lcHTTP = ""

 lcURL = ""

 llContinue = .T.

 IF VARTYPE(m.toCallback) == "O"

 TRY

 m.lcURL = m.toCallback.cURL

 CATCH

 m.llContinue = .F.

 ENDTRY

 ELSE

 m.llContinue = .F.

 ENDIF

 IF m.llContinue

 m.lcHTTP = HTTPToStr(m.lcURL)

 ENDIF

 ** toCallback is a custom object with a

 ** method named ProcessResult which will

 ** parse this result.

 IF VARTYPE(m.toCallback) == "O"

 TRY

 m.toCallback.ProcessResult(m.lcHTTP)

 CATCH

 ENDTRY

 ENDIF

 ENDPROC

It gets the AuthorsHandler callback object as a parameter, then refers back to that object to
retrieve the URL it needs to hit with the VFPConnection.fll. After getting the HTTP
response, it calls the ProcessResult method of the AuthorHandler, which extracts the
necessary data and updates the xBlogs grid.

And, while all of this is going on for one single URL, it is actually happening on all 60+ URLs
at virtually the same time. And that is the power of multi-threading.

Other examples during this session include 100+ almost simultaneous requests to one web
server, and unzipping a very large file using Craig Boyd’s VFPCompression.fll. The source
code from these examples are not included with the session materials.

Holy cow, this is awesome! But, this looks like some tight-
coupling is involved…
You are correct. The examples I’ve shown in the demos are tightly-coupled. I’m sure many
of you will find ways to properly manage threads and provide more generic functionality.
But, in an effort to keep it simple/easy, I have taken a tightly-coupled approach – not only
for this session, but in my own apps.

Are there any disadvantages to multi-threading?
Yes, there are some disadvantages. But in my experience, the advantages have far
outweighed the disadvantages. There are some things you should be mindful of when
working with multi-threading (everything in this section that is in italics is from Christof’s
Advisor answer – the rest are comments from me):

As a VFP developer, you’re used to variables, global objects, work areas, data sessions, etc.
Here, multi-threading is kind of disappointing. Every thread is a new instance of the VFP
runtime with its own set of variables, work areas, etc. You can’t create a cursor in one thread
and access it directly in another thread without converting it to some other format (XML,
string, file), passing it to the other thread, and converting it back.

I’ve done a bit of this in my own apps where the DLL will end up with a cursor that I need
to pass back to the app. A simple CURSORTOXML() in the DLL, followed by a
XMLTOCURSOR() in the event handler in my app takes care of this very quickly.

The same applies to object references. The only object the other thread sees is the object you
passed to it when you created the thread.

I had some trouble with this early on, but found that if my event handler objects contain
properties which are object references (i.e. my “application object”), I get access to all of
that from within the new thread, too.

Multi-threaded applications provide some challenges. For one, the MTDLL runtime is a
different one than the EXE runtime (there are subtle differences).

I’ve never ran into an issue with this – at least as far as I know. Most of the differences in
the runtimes that I know of have to do with display/UI issues.

It is also not as easy to debug an MTDLL.

Can I get an “AMEN!” to this one? This is the biggest hurdle I faced when I started playing
around with multi-threading. It really can be hard to debug an MTDLL. My favorite
debugging method is a truckload of STRTOFILE() statements in the DLL code. Not exactly a
best practices approach, but it works for me.

A fast multi-threaded application requires significantly more thought up front regarding the
architecture and the communication flow.

For me, this was a tough nut to crack. Time? More time? Upfront? Thinking? Personally,
I’d rather be coding than thinking any day. It does take time to think some of this stuff
through, but believe me - your users, boss, and co-workers will be pleased with the result!

Summary
In this session, we took a look at Christof’s DMULT.DLL, and seen the positive effects multi-
threading can have on our apps.

With DMULT.DLL, multi-threading in Visual FoxPro is not only possible – it’s easy!

Copyright 2011, Kevin Ragsdale.

